Статья 7214

Название статья

ПОЛУЧЕНИЕ ВАНИЛИНА С ИСПОЛЬЗОВАНИЕМ
МИКРООРГАНИЗМОВ-БИОТРАНСФОРМАТОРОВ. ОБЗОР

Авторы

Шпичка Анастасия Иосифовна, аспирант, Пензенский государственный университет
(Россия, г. Пенза, ул. Красная, 40), ana-shpichka@yandex.ru

Индекс УДК

663.1

Аннотация

В настоящее время существенная разница в цене на природный и синтетический ванилин и увеличивающийся спрос на натуральные ароматизаторы стимулировали высокую заинтересованность производителей получать это вещество путем биоконверсии микроорганизмами исходного недорогого субстрата (феруловая кислота, эвгенол, изоэвгенол). Биотехнологии на основе биотрансформации феруловой кислоты с использованием штаммов стрептомицетов и рекомбинантов кишечной палочки обеспечивают достаточно высокий выход целевого продукта и являются более конкурентоспособными по сравнению с эвгенолом и изоэвгенолом.

Ключевые слова

микроорганизмы, биотрансформация, ванилин, феруловая кислота, эвгенол, изоэвгенол.

 Скачать статью в формате PDF

Список литературы

1. Barghini, P. Vanillin production using metabolically engineered Escherichia coli under non-growing conditions / P. Barghini, D. Di Gioia, F. Fava, M. Ruzzi // Microbial Cell Factories. – 2007. – Vol. 6. – P. 13–24.
2. Tilay, A. Production of biovanillin by one-step transformation using fungus Pycnoporus cinnabarinus / A. Tilay, M. Bule, U. Annapure // J. Agric. Food Chem. – 2010. – Vol. 58. – P. 4401–4405.
3. Vandamme, E. J. Bioflavours and fragrances via fungi and their enzymes // E. J. Vandamme / Fungal Diversity. – 2003. – Vol. 13. – P. 153–166.
4. Serra, S. Biocatalytic preparation of natural flavours and fragrances / S. Serra, C. Fuganti, E. Brenna // TRENDS in Biotechnology. – 2006. – Vol. 23, № 4. – P. 194–198.
5. Converti, A. Microbial production of biovanillin / A. Converti, B. Aliakbarian, J. M. Domínguez, G. Bustos Vázquez, P. Perego // Brazilian Journal of Microbiology. – 2010. – Vol. 41. – P. 519–530.
6. Chemistry and technology of flavors and fragrances / ed. by D. J. Rowe. – Blackwell, 2005. – 336 p.
7. Gräfe, V. Untersuchungen uber die Holzsubstanz von chemischphysiologischen Standpunkte / V. Gräfe // Monatsh. Chem. Wissen. – 1904. – Vol. 25. – P. 987.
8. Шпичка, А. И. Сравнительная характеристика микроорганизмов, синтезирующих de novo летучие душистые вещества / А. И. Шпичка, Е. Ф. Семенова // Фундаментальные исследования. – 2013. – № 8 (ч. 5). – С. 1113–1124.
9. Cheetham, P. S. J. The use of biotransformation for the production of flavours and fragrances / P. S. J. Cheetham // Trends Biotechnol. – 1993. – Vol. 11. – P. 478–488.
10. Krings, U. Biotechnological production of flavours and fragrances // U. Krings, R. G. Berger // Appl. Microbiol. Biotechnol. – 1998. – Vol. 49. – P. 1–8.
11. Haeusler, A. Microbial production of natural flavors / A. Haeusler, T. Muench // ASM News. – 1998. – Vol. 63, № 10. – P. 551–559.
12. Hagedorn, S. Microbial biocatalysis in the generation of flavour and fragrance chemicals / S. Hagedorn, B. Kaphammer // Annu. Rev. Microbiol. – 1994. – Vol. 48. – P. 773–800.
13. Rosazza, J. P. N. Biocatalytic transformations of ferulic acid; an abundant aromatic natural product / J. P. N. Rosazza, Z.Huang, L.Dostal, T. Volm, B. Rosseau //J. Ind. Microbiol. Biotechnol.–1995.–Vol.15.– P.457–471.
14. Priefert, H. Biotechnological production of vanillin / H. Priefert, J. Rabenhorst, A. Steinbüchel // Appl. Microbiol. Biotechnol. – 2001. – Vol. 56. – P. 296–314.
15. Ramachandra Rao, S. Vanilla flavour: production by conventional and biotechnological routes / S. Ramachandra Rao, G. A. Ravishankar // J. Sci. Food. Agric. – 2000. – Vol. 80. – P. 289–304.
16. Kirk, T. K. Effects of microorganisms on lignin / T. K. Kirk // Annu. Rev. Phytopatol. – 1971. – Vol. 9. – P. 185–210.
17. Betts, W. B. Screening of fungi and bacteria for their ability to degrade insoluble, lignin-related aromatic compounds / W. B. Betts, R. K. Dart // Microbios. – 1988. – Vol. 55. – P. 85–93.
18. Williamson, G. Hairy plant polysaccharides: a close shave with microbial esterases / G. Williamson, P.A.Kroon, C. B. Faulds // Microbiology. – 1998. – Vol. 144. – P. 2011–2023.
19. Di Gioia, D. Production of biovanillin from wheat bran / D. Di Gioia, L. Sciubba, L. Setti, F. Luziatelli, M. Ruzzi, D. Zanichelli, F. Fava // Enzyme Microb. Technol. – 2007. – Vol. 41. – P. 498–505.
20. Faulds, C. B. Arabinoxylan and mono- and dimeric ferulic acid release from bre¬wer’s and wheat bran by feruloyl esterases and glycosyl hydrolases from Humicolar insolens / C. B. Faulds, G. Mandatari, R. B. Lo Curto, G. Bisognano, K. W. Waldron // Appl. Microbiol. Biotechnol. – 2004. – Vol. 64. – P. 644–650.
21. Shin, H. D. Production and characterization of a type B feruloyl esterase from Fusarium proliferatum NRRL 26517 / H. D. Shin, R. R. Chen // Enzyme Microb. Technol. – 2006. – Vol. 38. – P. 478–485.
22. Yoon, S.-H. Production of vanillin from ferulic acid using recombinant strains of Escherichia coli / S.-H. Yoon, C. Li, Y.-M. Lee, S.-H. Lee, S.-H. Kim, M.-S. Choi, W.-T. Seo, J.-K. Yang, J.-Y. Kim, S.-W. Kim // Biotechnology and Bioprocess Engineering. – 2005. – Vol. 10, № 4. – P. 378–384.
23. Kaur, B. Statistical media and process optimization for biotransformation of rice bran to vanillin using Pediococcus acidilactici / B. Kaur, D. Chakraborty // Indian Journal of Experimental Biology. – 2013. – Vol. 51. – P. 935–943.
24. Sutherland, J. B. Metabolism of cinnamic, p-coumaric and ferulic acids by Streptomyces setonii / J. B. Sutherland, D. L. Crawford, A. L. Pometto III // Can. J. Microbiol. – 1983. – Vol. 29. – P. 1253–1257.
25. Gurujeyalakshmi, G. Dissimilation of ferulic acid by Bacillus subtilis / G. Gurujeyalakshmi, A. Mahadevan // Curr. Microbiol. – 1987. – Vol. 16. – P. 69–73.
26. Andreoni, V. Biotransformation of ferulic acid and related compounds by mutant strains of Pseudomonas fluorescens/ V.Andreoni, S.Bemasconi, G.Bestetti //Appl. Microbiol. Biotechnol. –1995. –Vol. 42.- P.830–835.
27. Barghini, P. Optimal conditions for bioconversion of ferulic acid into vanillic acid by Pseudomonas fluorescens BF13 cells / P. Barghini, F. Montebove, M. Ruzzi, A. Schiesser // Appl. Microbiol. Biotechnol. – 1998. – Vol. 49. – P. 309–314.
28. Narbad, A. Metabolism of ferulic acid to vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens / A. Narbad, M. J. Gasson // Microbiology. – 1998. – Vol. 144. – P. 1397–1405.
29. Longo, M. A. Production of food aroma compounds: microbial and enzymatic methodologies / M. A. Longo, M. A. Sanroman // Food Technol. Biotechnol. – 2006. – Vol. 44, № 3. – P. 335–353.
30. Gunnarsson, N. Influence of pH and carbon source on the production of vanillin from ferulic acid by Streptomyces setonii ATCC 39116 / N. Gunnarsson, E. A. Palmqvist // Develop. Food Sci. – 2006. – Vol. 43. – P. 73–76.
31. Bloem, A. Vanillin production from simple phenols by wine-associated lactic acid bacteria / A. Bloem, A. Bertrand, A. Lonvaud-Funel, G. Revelde // Lett. Appl. Microbiol. – 2007. – Vol. 44, № 1. – P. 62.
32. Muheim, A. Towards a high-yield bioconversion of ferulic acid to vanillin / A. Muheim, K. Lerch // Appl. Microbiol. Biotech. – 1999. – Vol. 51, № 4. – P. 456–461.
33. Hua, D. Enhanced vanillin production from ferulic acid using adsorbent resin / D. Hua, C. Ma, L. Song, S. Lin, Z. Zhang, Z. Deng, P. Xu // Appl. Microbiol. Biotech. – 2007. – Vol. 74, № 4. – P. 783–790.
34. Lesage-Meessen, L. Fungal tranformation of ferulic acid from sugar beet pulp to natural vanillin / L. Lesage-Meessen, C. Stentelaire, A. L. Colo, D. Couteau, M. Asther, S. Moukha, E. Record, J.-C. Sigoillot, M. Asther // J. Sci. Food Agri. – 1999. – Vol. 79. – P. 487.
35. Lesage-Meessen, L. A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran / L. Lesage-Meessen, A. Lomascolo, E. Bonnin, J. F. Thibault, A. Buleon, M. Roller, M. Asther, E. Record, B. C. Ceccaldi, M. Asther // Appl. Biochem. Biotechnol. – 2002. – Vol. 102. – P. 141–153.
36. Zheng, L. Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus / L. Zheng, P. Zheng, Z. Sun, Y. Bai, J. Wang, X. Guo // Bioresour. Technol. – 2007. – Vol. 98. – P. 1115–1119.
37. Barbosa, E. S. Vanillin production by Phanerochaete chrysosporium grown on green coconut agro industrial husk in solid state fermentation / E. S. Barbosa, D. Perrone, A. L. A. Endramini, S. Q. F. Leite // Bioresources. – 2008. – Vol. 3, № 4. – P. 1042.
38. Salleh, N. H. M. Aromatic benzaldehyde from Oryzae sativa / N. H. M. Salleh, M. Z. M. Daud, D. Arbain, M. S. Ahmad // International conference on food engineering and biotechnology, IPCBEE. – 2011. – Vol. 9. – P. 141.
39. Narbad, A. Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens / A. Narbad, M. J. Gasson // Microbiol. – 1998. – Vol. 144. – P. 1397–1405.
40. Venturi, V. Genetics of ferulic acid bioconversion to protocatechuic acid in plant growth-promoting Pseudomonas putida WCS358 / V. Venturi, F. Zennaro, G. Degrassi, B. C. Okeke, C. V. Bruschi // Microbiol. – 1998. – Vol. 144. – P. 965–973.
41. Overhage, J. Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene / J. Overhage, H. Priefert, J. Rabenhorst, A. Steinbuechel // Appl. Microbiol. Biotechnol. – 1999. – Vol. 52. – P. 820–828.
42. Converti, A. Vanillin production by recombinant strains of Escherichia coli / A. Converti, D. De Faveri, P. Perego, P. Barghini, M. Ruzzi, L. Sene // Braz. J. Microbiol. – 2003. – Vol. 34. – P. 108–110.
43. Okeke, B. C. Construction of recombinants Pseudomonas putida BO14 and Escherichia coli QEFCA8 for ferulic acid biotransformation to vanillin / B. C. Okeke, V. Venturi // J. Biosci. Bioeng. – 1999. – Vol. 88. – P. 103–106.
44. Achterholt, S. Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin / S. Achterholt, H. Priefert, A. Steinbuechel // Appl. Microbiol. Biotechnol. – 2000. – Vol. 54. – P. 799–807.
45. Yoon, S. H. Production of vanillin by metabolically engineered Escherichia coli / S. H. Yoon, C. Li, J.-E. Kim, S.-H. Lee, J.-Y. Yoon, M.-S. Choi, W.-T. Seo, J.-K. Yang, J.-Y. Kim, S.-W. Kim // Biotechnol. Lett. – 2005. – Vol. 27. – P. 1829–1832.
46. Yoon, S. H. Production of vanillin from ferulic acid using recombinant strains of Escherichia coli / S. H. Yoon, C. Li, Y. M. Lee, S. H. Lee, J. E. Kim, M. S. Choi, W. T. Seo, J. K. Yang, J. Y. Kim, S. W. Kim // Biotechnol. Bioprocess Eng. – 2005. – Vol. 10. – P. 378–384.
47. Barghini, P. Vanillin production using metabolically engineered Escherichia coli under non-growing conditions / P. Barghini, D. Di Gioia, F. Fava, M. Ruzzi // Microbial Cell Factories. – 2007. – Vol. 6. – P. 13–24.
48. Lesage-Meessen, L. A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus / L. Lesage-Meessen, M. Delattre, M. Haon, J. F. Thibault, B. Colonna Ceccaldi, P. Brunerie, M. Asther // J. Biotechnol. – 1996. – Vol. 50. – P. 107–113.
49. Stentelaire, C. Design of a fungal bioprocess for vanillin production from vanillic acid at scalable level by Pycnoporus cinnabarinus / C. Stentelaire, L. Lesage-Meessen, J. Oddou, O. Bernard, G. Bastin, B. Collonna-Ceccaldi, M. Asther // Journal of Bioscience and Bioengineering. – 2000. – Vol. 89. – P. 223– 230.
50. Bonnin, E. Enzymic release of cellobiose from sugar beet pulp, and its use to flavour vanillin production in Pycnoporus cinnabarinus from vanillic acid / E. Bonnin, H. Grange, L. Lesage-Meessen, M. Asther, J. F. Thibault // Carbohydr. Polym. – 2000. – Vol. 41. – P. 143–151.
51. Bonnin, E. Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL39533, selected for the biotransformation of ferulic acid to vanillin, are also able to produce cell wall polysaccharide degrading enzymes and feruloyl esterases / E. Bonnin, M. Brunel, Y. Gouy, L. Lesage-Meessen, M. Asther, J-F. Thibault // Enzyme Microb. Technol. – 2001. – Vol. 28. – P. 70–80.
52. Thibault, J. Fungal bioconversion of agricultural by-products to vanillin / J. Thibault, V. Micard, C. Renard, M. Asther, M. Delattre, L. Lesage-Meessen, C. Faulds,
P. Kroon, G. Williamson, J. Duarte, J. C. Duarte, B. C. Ceccaldi, M. Tuohy, D. Couteau, S. Van Hulle, H.-P. Heldt-Hansen// LWT-Food Sci. Technol. – 1998. – Vol. 31. – P. 530–536.
53. Di Gioia, D. Production of biovanillin from wheat bran / D. Di Gioia, L. Sciubba, L. Setti, F. Luziatelli, M. Ruzzi, D. Zanichelli, F. Fava // Enzyme Microb. Technol. – 2007. – Vol. 41. – P. 498–505.
54. Shimoni, E. Isolation of a Bacillus sp. capable of transforming isoeugenol to vanillin / E. Shimoni, U. Ravid, Y. Shoham // Journal of Biotechnology. – 2000. – Vol. 78. – P. 1–9.
55. Overhage, J. Harnessing eugenol as a substrate for production of aromatic compounds with a recombinant strains of Amycolatopsis sp. HR167 / J. Overhage, A. Steinbüchel, H. Priefert // J. Biotechnol. – 2006. – Vol. 125. – P. 369–376.
56. Tadasa, K. Degradation of eugenol by a microorganism / K. Tadasa // Agric. Biol. Chem. – 1977. – Vol. 41. – P. 925–929.
57. Rabenhorst, J. Production of methoxyphenol type natural aroma chemicals by biotransformation of eugenol with a new Pseudomonas sp. / J. Rabenhorst // Appl. Microbiol. Biotechnol. – 1996. – Vol. 46. – P. 470–474.
58. Tadasa, K. Initial steps of eugenol degradation pathway of a microorganism / K. Tadasa, H. Kayahara // Agric. Biol. Chem. – 1983. – Vol. 47. – P. 2639–2640.
59. Hua, D. Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: Identification of major metabolites / D. Hua, C. Ma, S. Lin, L. Song,
Z. Deng, Z. Maomy, Z. Zhang, B. Yu, P. Xu // Journal of Biotechnology. – 2007. – Vol. 130. – P. 463–470.
60. Bare, G. Bioconversion of vanillin into vanillic acid by Pseudomonas strain BTP9 / G. Bare, J. Gerard, Ph. Jacques, V. Delaunois, Ph. Thonart // Appl. Biochem. Biotechnol. – 1992. – Vol. 34–35. – P. 499–510.
61. Achterholt, S. Purification and characterization of the coniferyl aldehyde dehydrogenase from Pseudomonas sp. strain HR199 and molecular characterization of the gene / S. Achterholt, H. Priefert, A. Steinbuechel // J. Bacteriol. – 1998. – Vol. 180. – P. 4387–4391.
62. Brandt, K. Characterization of the eugenol hydroxylase genes (ehyA/ehyB) from the new eugenol degrading Pseudomonas sp. strain OPS1 / K. Brandt, S. Thewes, J. Overhage, H. Priefert, A. Steinbuechel // Appl. Microbiol. Biotechnol. – 2001. – Vol. 56. – P. 724–730.
63. Gasson, M. J. Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester / M. J. Gasson, Y. Kitamura, W. R. McLauchlan, A. Narbad, A. J. Parr, E. L. Parsons, J. Payne, M. J. Rhodes, N. J. Walton // J. Biol. Chem. – 1998. – Vol. 237. – P. 4163–4170.
64. Overhage, J. Molecular characterization of the genes pcaG and pcaH, encoding protocatechuate 3,4-dioxygenase, which are essential for vanillin catabolism in Pseudomonas sp. strain HR199 / J. Overhage, A. U. Kresse, H. Priefert, H. Sommer, G. Krammer, J. Rabenhorst, A. Steinbuechel // Appl. Environ. Microbiol. – 1999. – Vol. 65. – P. 951–960.
65. Priefert, H. Identification and molecular characterization of the eugenol hydroxylase genes (ehyA/ehyB) of Pseudomonas sp. strain HR199 / H. Priefert, J. Overhage, A. Steinbuechel // Arch. Microbiol. – 1999. – Vol. 172. – P. 354–363.
66. Priefert, H. Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate / H. Priefert, J. Rabenhorst, A. Steinbuechel // J. Bacteriol. – 1997. – Vol. 179. – P. 2595–2607.
67. Overhage, J. Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199 / J. Overhage, H. Priefert, A. Steinbuechel // Appl. Environ. Microbiol. – 1999. – Vol. 65. – P. 4837–4847.
68. Furukawa, H. Purification and characterization of eugenol dehydrogenase from Pseudomonas fluorescens E118 /H. Furukawa, M. Wieser, H. Morita, T. Sugo, T. Nagasawa // Arch.Microbiol.– 1998.– Vol.171.– P.37–43.
69. Overhage, J. Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstonia eutropha H 16 / J. Overhage, A. Steinbuechel, H. Priefert // Appl. Environ. Microbiol. – 2002. – Vol. 68. – P. 4315–4321.
70. Overhage, J. Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli / J. Overhage, A. Steinbuechel, H. Priefert // App. Envir. Microbiol. – 2003. – Vol. 69, № 11. – P. 6569–6576.
71. Abraham, W. R. Microbial transformations of some terpenoids and natural compounds / W. R. Abraham, H. A. Arfmann, S. Stumpf, P. Washausen, K. Kieslich // Bioflavour ’87, Analysis, Biochemistry, Biotechnology, Proc. Int. Conf. Walter de Gruyter. – Berlin, 1988. – P. 399–414.

 

Дата создания: 22.07.2014 16:02
Дата обновления: 22.07.2014 16:52